login
A369405
Context-free language 1^n.0^(2n).
1
100, 110000, 111000000, 111100000000, 111110000000000, 111111000000000000, 111111100000000000000, 111111110000000000000000, 111111111000000000000000000, 111111111100000000000000000000, 111111111110000000000000000000000, 111111111111000000000000000000000000
OFFSET
1,1
COMMENTS
This sequence represents the context-free language 1^n.0^(2n) which can be accepted by a pushdown automaton. It finds applications in the study of formal languages and automata theory in theoretical computer science.
FORMULA
From Robert Israel, Jan 22 2024: (Start)
a(n) = (10^n-1)*10^(2*n)/9.
G.f.: 100*x/(100000*x^2 - 1100*x + 1). (End)
From Alois P. Heinz, Feb 04 2024: (Start)
a(n) = A007088(A059409(n)).
a(n) = 10 * A138119(n).
a(n) = 100 * A147816(n). (End)
MAPLE
a:= n-> convert(4^n*(2^n-1), binary):
seq(a(n), n=1..15); # Alois P. Heinz, Feb 04 2024
MATHEMATICA
Array[(10^#-1)*10^(2*#)/9 &, 20] (* or *)
LinearRecurrence[{1100, -100000}, {100, 110000}, 20] (* Paolo Xausa, Feb 27 2024 *)
PROG
(Python)
def A369405(n): return (10**n-1)//9*10**(n<<1) # Chai Wah Wu, Feb 11 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vyom Narsana, Jan 22 2024
STATUS
approved