login
A369401
Expansion of (1/x) * Series_Reversion( x / (1+x) * (1-x^3)^3 ).
2
1, 1, 1, 4, 16, 46, 139, 511, 1891, 6707, 24366, 91840, 348236, 1320309, 5056414, 19565036, 76077330, 296994727, 1165438921, 4594915664, 18181401268, 72176250259, 287450966807, 1148178877918, 4598148937702, 18458646079181, 74267340207247
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k+2,k) * binomial(n+1,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( (1+x) / (1-x^3)^3 )^(n+1). - Seiichi Manyama, Feb 16 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x)*(1-x^3)^3)/x)
(PARI) a(n, s=3, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial(u*(n+1), n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 22 2024
STATUS
approved