OFFSET
1,2
COMMENTS
First differs from A336465 at n = 27.
The sum is restricted to numbers k that have a common exponential divisor with n, i.e., numbers k with rad(k) = rad(n), where rad is the squarefree kernel function (A007947).
Analogous to Pillai's arithmetical function (A018804), with exponential divisors instead of divisors.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294; arXiv preprint, arXiv:math/0610274v2 [math.NT], 2006-2009.
Eric Weisstein's World of Mathematics, e-Divisor.
FORMULA
a(n) = Sum_{k=1..n, rad(k) = rad(n)} (n, k)_(e), where (n, k)_(e) = Product_{p|n} p^gcd(v_p(n), v_p(k)), and v_p(n) is the p-adic valuation of n (the exponent of the highest power of p that divides n).
Multiplicative with a(p^e) = Sum_{k=1..e} p^gcd(e, k) = Sum_{d|e} p^d * phi(e/d), where phi is the Euler totient function (A000010).
Dirichlet g.f.: (zeta(s-1)*zeta(2*s-1)/zeta(3*s-2)) * Product_{p prime} (1 + ((p^(s-1)-1)*(p^(2*s-1)-1)/(p^(3*s-2)-1)) * Sum_{k>=3} phi(k)/(p^(k*s-1)-1)).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n * log(n)^(5/3)), where c = Product_{p prime} (1 + Sum_{k>=2} (a(p^k) - p*a(p^(k-1)))/p^(2*k)) = 1.16509457249412700814... .
Lim sup_{n->oo} a(n)/(n*log(log(n))) = 6 * exp(gamma)/Pi^2 (A335004).
MATHEMATICA
f[p_, e_] := DivisorSum[e, p^#*EulerPhi[e/#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, sumdiv(f[i, 2], d, f[i, 1]^d * eulerphi(f[i, 2]/d))); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Feb 13 2024
STATUS
approved