login
A369270
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1+x^3)^3 ).
4
1, 3, 15, 94, 657, 4902, 38233, 307953, 2541831, 21386810, 182754162, 1581699162, 13836248406, 122139271098, 1086638457429, 9733419373534, 87707244737511, 794505072627735, 7231017033165776, 66089527981542462, 606340568510978940, 5582088822346925210
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+3,k) * binomial(4*n-3*k+2,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^3 * (1+x^3)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1+x^3)^3)/x)
(PARI) a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A369232.
Sequence in context: A241711 A243245 A128240 * A369301 A368964 A274734
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 18 2024
STATUS
approved