login
A369261
Lexicographically earliest infinite sequence such that a(i) = a(j) => A324644(i) = A324644(j) and A369445(i) = A369445(j), for all i, j >= 1.
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 16, 20, 24, 25, 26, 27, 21, 28, 29, 30, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 29, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 35, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 62, 53, 51, 70, 71, 72, 58, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 63
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A324644(n), A369445(n)], or equally, of the pair [A000203(n), A324644(n)], or equally, of the pair [A000203(n), A369445(n)].
For all i, j >= 1: a(i) = a(j) => A286603(i) = A286603(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A324644(n) = gcd(sigma(n), A276086(n));
Aux369261(n) = { my(u=A324644(n)); [u, sigma(n)/u]; };
v369261 = rgs_transform(vector(up_to, n, Aux369261(n)));
A369261(n) = v369261[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 25 2024
STATUS
approved