login
A369216
Expansion of (1/x) * Series_Reversion( x * ((1-x)^4-x) ).
2
1, 5, 44, 479, 5827, 75887, 1034980, 14593794, 211031650, 3112385177, 46636714566, 707983562624, 10865572966703, 168306274609798, 2627854427929448, 41314461126179272, 653481096161664690, 10391753978329136808, 166040704868503173384
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(5*n+3*k+3,n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serreverse(x*((1-x)^4-x))/x)
(PARI) a(n) = sum(k=0, n, binomial(n+k, k)*binomial(5*n+3*k+3, n-k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 16 2024
STATUS
approved