%I #10 Jan 15 2024 09:03:13
%S 1,5,35,285,2530,23750,231850,2329850,23940475,250394375,2656849375,
%T 28529354375,309445377750,3385369628750,37312228370000,
%U 413913023212500,4617886656665625,51781448191328125,583266654383859375,6596645477096428125,74881064169289121875
%N Expansion of (1/x) * Series_Reversion( x / ((1+x)^5-x^5) ).
%H <a href="/index/Res#revert">Index entries for reversions of series</a>
%F a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+1,k) * binomial(5*n-5*k+5,n-5*k).
%o (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^5-x^5))/x)
%o (PARI) a(n) = sum(k=0, n\5, (-1)^k*binomial(n+1, k)*binomial(5*n-5*k+5, n-5*k))/(n+1);
%Y Cf. A107264, A369156.
%Y Cf. A349361, A369128.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jan 15 2024