login
A369053
Exponential of Mangoldt function permuted by A243353.
5
1, 2, 2, 3, 3, 2, 1, 5, 5, 1, 2, 3, 1, 1, 1, 7, 7, 1, 1, 1, 3, 2, 1, 5, 1, 1, 1, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 2, 1, 5, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,2
COMMENTS
Also LCM-transform of A243353 (when viewed as an offset-1 sequence), because A243353 has the S-property explained in the comments of A368900.
FORMULA
a(n) = A014963(A243353(n)).
a(0) = 1, and for n > 0, a(n) = lcm {1..A243353(n)} / lcm {1..A243353(n-1)}. [See comments]
PROG
(PARI)
A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
A003188(n) = bitxor(n, n>>1);
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A243353(n) = A005940(1+A003188(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 12 2024
STATUS
approved