%I #12 Jan 24 2024 18:33:44
%S 1,2,3,2,5,3,1,2,7,5,1,3,1,1,1,2,11,7,1,5,1,1,1,3,1,1,1,1,1,1,1,2,13,
%T 11,1,7,1,1,1,5,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,17,13,
%U 1,11,1,1,1,7,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1
%N Exponential of Mangoldt function permuted by A253565.
%C Also LCM-transform of A253565 (when viewed as an offset-1 sequence), because A253565 has the S-property explained in the comments of A368900.
%H Antti Karttunen, <a href="/A369029/b369029.txt">Table of n, a(n) for n = 0..65537</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F a(n) = A014963(A253565(n)).
%F a(0) = 1, and for n > 0, a(n) = lcm {1..A253565(n)} / lcm {1..A253565(n-1)}. [LCM-transform, see comments]
%o (PARI)
%o A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
%o A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
%o A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n)));
%o A253560(n) = if(1==n, 1, (n*prime(A061395(n))));
%o A253565(n) = if(n<2,(1+n),if(!(n%2),A253550(A253565(n/2)),A253560(A253565((n-1)/2))));
%o A369029(n) = A014963(A253565(n));
%Y Cf. A014963, A253565, A368900, A369028, A369030, A369053.
%K nonn
%O 0,2
%A _Antti Karttunen_, Jan 12 2024