login
A368942
Burning number of the n-antiprism graph.
0
2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10
OFFSET
1,1
COMMENTS
The n-antiprism graph is defined for n >= 3. The sequence has been extended to n=1 using the formula. - Andrew Howroyd, Jan 10 2024
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph.
Eric Weisstein's World of Mathematics, Burning Number.
FORMULA
a(n) = A204166(2*n) = A351846(2*n-1) + 1 = floor((sqrt(16*n - 1) + 1)/4) + 1. - Andrew Howroyd, Jan 10 2024
MATHEMATICA
Table[Floor[(Sqrt[16 n - 1] + 5)/4], {n, 50}]
Floor[(Sqrt[16 Range[50] - 1] + 5)/4]
PROG
(PARI) a(n) = {1 + (sqrtint(16*n - 1) + 1)\4} \\ Andrew Howroyd, Jan 10 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 10 2024
EXTENSIONS
a(1)-a(2) and terms a(34) and beyond from Andrew Howroyd, Jan 10 2024
STATUS
approved