login
A368932
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^4) ).
3
1, 2, 7, 30, 144, 741, 3996, 22287, 127495, 743941, 4410555, 26492349, 160875186, 986007700, 6091548256, 37894543413, 237168491610, 1492323419929, 9434943086870, 59906035386393, 381832957589226, 2442251022673595, 15670578495195870
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(3*n-3*k+1,n-4*k).
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(3*n-3*k+1, n-4*k))/(n+1);
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^4))/x)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 10 2024
STATUS
approved