BIGRASSMANNIANS AND PATTERN AVOIDANCE NOTES

JOSH SWANSON

Contents

1. Grassmannians and Bigrassmannians in Type A 1
2. Type B 3
3. Type D 4

1. Grassmannians and Bigrassmannians in Type A

Definition 1. A Grassmannian $w \in S_{n}$ is a permutation with ≤ 1 right descent. The only Grassmannian with no descents is the identity.

Proposition 2. For $w \in S_{n}$ with one-line notation $w=w_{1} \cdots w_{n}$, the following are equivalent:
(i) w is Grassmannian
(ii) w is of the form

$$
\begin{aligned}
& w_{1}<w_{2}<\cdots<w_{k} \\
& w_{k+1}<w_{k+2}<\cdots<w_{n}
\end{aligned}
$$

for some $k \in[n-1]$.
(iii) w is 321-, 2143-, and 3142-avoiding.

Proof.

- (i) \Leftrightarrow (ii): Clear.
- (i) \Rightarrow (iii): Contrapositive. If w has a 321,2143 , or 3142 pattern, it evidently has at least 2 descents.
- (iii) \Rightarrow (i): Contrapositive. Suppose w has two descents at positions $k_{1}<k_{2}$. Let $a=w_{k_{1}}, b=w_{k_{1}+1}$, $c=w_{k_{2}}, d=w_{k_{2}+1}$, so $a>b$ and $c>d$.

If $b \geq c$, then $a>b>d$ gives a 321 pattern, so suppose $b<c$, and note that now each of a, b, c, d are distinct.

If $a>c$, then $a>c>d$ gives a 321 pattern, so suppose $a<c$. If $b>d$, then $a>b>d$ gives a 321 pattern, so suppose $b<d$. If $a>d$, then $c>a>d>b$ gives a 3142 pattern, whereas if $a<d$, then $c>d>a>b$ gives a 2143 pattern.

Corollary 3. There are $2^{n}-n$ Grassmannians in S_{n}.

Proof. From (ii) of the proposition, to specify a Grassmannian it suffices to choose a set $S=\left\{w_{1}, \ldots, w_{k}\right\} \subset[n]$, of which there are 2^{n}. It's easy to see that the resulting permutation will be the identity if and only if S is of the form \varnothing or $\{1, \ldots, k\}$, which is hence counted $n+1$ times. Otherwise, the result has one descent and is counted just once.

Remark 4. A permutation w contains a pattern v if and only if w^{-1} contains v^{-1}. This is easy to see using the permutation matrix interpretation of pattern containment-striking rows and columns from the matrix of w yields the matrix of v; transposing such a matrix yields its inverse.

Definition 5. A bigrassmannian $w \in S_{n}$ is a permutation where both w and w^{-1} are Grassmannian.
Proposition 6. For $w \in S_{n}$ with one-line notation $w=w_{1} \cdots w_{n}$, the following are equivalent:
(i) w is bigrassmannian
(ii) w is of one of the following forms:
(a) $w_{1}=1$ and $w_{2} \cdots w_{n}$ forms a bigrassmannian in $S_{[n]-\{1\}}$.
(b) $w_{1}>1$ and for some k where $a:=w_{1} \leq k<n$ we have

$$
w=a, a+1, \ldots, k, 1,2, \ldots, a-1, k+1, \ldots, n .
$$

(iii) w is 321-, 2143-, 3142-, and 2413-avoiding.

Remark 7. The bold permutation is the only one not appearing on the previous list for Grassmannian pattern avoidance.

Proof.

- (i) \Leftrightarrow (iii): w is bigrassmannian if and only if w, w^{-1} are Grassmannian, which by the preceding proposition and remark occurs if and only if w is 321-, 2143-, 3142-, $321^{-1}-, 2143^{-1}-$, and $3142^{-1}-$ avoiding. Only $3142^{-1}=2413$ is new.
- (ii) \Rightarrow (iii): in case (a) this is clear. In case (b), such a w is clearly Grassmannian with descent at k, so it is $321-$, 2143 -, and 3142 -avoiding. It is evidently also 2413 -avoiding.
- (iii) \Rightarrow (ii): From (ii) and (iii) of the preceding proposition, we have some j such that w is

$$
\begin{aligned}
& w_{1}<w_{2}<\cdots<w_{j} \\
& w_{j+1}<w_{j+2}<\cdots<w_{n} .
\end{aligned}
$$

If $w_{j}<w_{j+1}$ then w must be id, which is of the proper form, so suppose $w_{j}>w_{j+1}$. Now if w_{1}, \ldots, w_{j} are each successively one larger, w is of the form in (b), so suppose w_{1}, \ldots, w_{j} "skips" something. That is, there is some i with $i>j$ such that $w_{1}<w_{i}<w_{j}$. Now, if $w_{1}=1$, then $w_{2} \cdots w_{n}$ continues to avoid the suggested patterns, so we may inductively assume it forms a bigrassmannian in $S_{[n]-\{1\}}$. (The base case $n=1$ is trivial.) So, take $w_{1}>1$. Since w is a permutation, something must hit 1 , and a moment's thought reveals that $w_{j+1}=1$ is forced. Now

$$
w_{j+1}<w_{1}<w_{i}<w_{j} \quad 1<j<j+1<i
$$

yields a 2413 pattern, a contradiction.

Corollary 8. There are $1+\binom{n+1}{3}$ bigrassmannians in S_{n}.
Proof. Let $B(n)$ denote the number of non-identity bigrassmannians in S_{n}. Condition (ii)(a) of the proposition contributes $B(n-1)$ bigrassmannians to S_{n}, while condition (ii)(b) contributes $n-a+1$ for each $2 \leq a \leq n$, i.e.

$$
B(n)=B(n-1)+(n-1)+\cdots+2+1=B(n-1)+\binom{n}{2}
$$

Now $B(2)=1$ by hand, which is $\binom{2+1}{3}$. Since $\binom{n+1}{3}=\binom{n}{3}+\binom{n}{2}$, we have $B(n)=\binom{n+1}{3}$.
(The form in (ii) and this computation can be cleaned up significantly.)

2. Type B

Remark 9. As a reflection group, B_{n} is generated by reflections through e_{i} and $\pm e_{i} \pm e_{j}$ for $i \neq j$ in \mathbb{R}^{n}. A simple system (cf. Humphreys' "Reflection Groups and Coxeter Groups") is given by $e_{i}-e_{i+1}$ for $1 \leq i<n$ and e_{1}.

Another construction of B_{n} is as a subgroup of $S_{2 n}$, namely all bijections $w:[\pm n] \rightarrow[\pm n]$ with $w(-a)=-w(a)$ (cf. $\S 8.1$ of Björner and Brenti's lovely "Combinatorics of Coxeter Groups"). The simple roots/generators S here (in window notation, a modification of one-line notation) are

$$
\begin{array}{ll}
s_{i} & =[1, \ldots, i-1, i+1, i, i+2, \ldots, n] \quad 1 \leq i<n \\
s_{0} & =[-1,2, \ldots, n] .
\end{array}
$$

Björner and Brenti explicitly compute $\operatorname{inv}(w)$ in this notation and also show:
Proposition 10. Let $v \in B_{n}$. Then

$$
\operatorname{Des}(v)=\left\{s_{i} \in S: v(i)>v(i+1)\right\} \quad \text { where } v(0):=0
$$

Definition 11. For a general Coxeter system $(W, S), u \in W$ is Grassmannian if $|\operatorname{Des}(u)| \leq 1$, where $\operatorname{Des}(u):=\{s \in S: \ell(u s)<\ell(u)\}$ and where $\ell(v)$ is the minimal length of an expression of the form $v=s_{1} \cdots s_{m}$ for $s_{i} \in S$. An element $u \in W$ is bigrassmannian if both u and u^{-1} are Grassmannian.
Example 12. In B_{n}, we can check that

$$
\mid \operatorname{Des}([-2: 3 r r r r) \mid=3
$$

which arises from descents at s_{0}, s_{2}, s_{3}.
Proposition 13. There are $3^{n}-n$ Grassmannians in type B_{n}.

Proof. From the explicit description of descents in $B_{n}, w \in B_{n}$ has at most one descent if and only if
(i) $w_{1}<0: w_{1} \cdots w_{n}$ forms an increasing sequence and $w_{1}<0$; or
(ii) $w_{1}>0: w_{1} \cdots w_{n}$ is made of two increasing sequences, $w_{1}<\cdots<w_{k}, w_{k+1}<\cdots<w_{n}$ with $w_{1}>0$ and $w_{k}>w_{k+1}$; or
(iii) $w=\mathrm{id}$.

Hence for each such element we can identify a possibly empty increasing sequence of positive entries followed by a possibly empty increasing sequence thereafter. It follows that for each value $1, \ldots, n$ we may specify whether or not that entry is in the positive initial sequence, or whether it is in the second sequence, and if it is in the second sequence, whether it is positive or negative. This yields 3^{n} choices, though there are some overcounts. In particular, the identity is obtained in $n+1$ ways in exact analogy to the Grassmannians in S_{n}. The result follows.

Definition 14. The notion of pattern avoidance in B_{n} is not simply inherited from pattern avoidance in $S_{2 n}$. Instead, we can imagine elements of B_{n} as signed permutation matrices, namely permutation matrices but with entries ± 1. We say $u \in B_{n}$ contains $v \in B_{m}$ if we can strike rows and columns from the matrix of u to obtain the matrix of v.

We again find that u avoids v if and only if u^{-1} avoids v^{-1}.
Proposition 15. Grassmannians in B_{n} are precisely those elements avoiding

$$
\begin{aligned}
& {\left[\begin{array}{ll}
-1 & -2
\end{array}\right],\left[\begin{array}{lll}
-1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
2 & 1 & -3
\end{array}\right],\left[\begin{array}{lll}
-2 & 3 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
-2 & 3 & -1
\end{array}\right],\left[\begin{array}{lll}
3 & 1 & -2
\end{array}\right],\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right],\left[\begin{array}{lll}
3 & 2 & -1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
-3 & 1 & -2
\end{array}\right],\left[\begin{array}{lll}
-3 & 2 & 1
\end{array}\right],\left[\begin{array}{lll}
-3 & 2 & -1
\end{array}\right],\left[\begin{array}{llll}
2 & 1 & 4 & 3
\end{array}\right],\left[\begin{array}{llll}
3 & 1 & 4 & 2
\end{array}\right] .}
\end{aligned}
$$

The bigrassmannians in B_{n} are precisely those elements which additionally avoid

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & -3 & 1
\end{array}\right],\left[\begin{array}{llll}
2 & -3 & -1
\end{array}\right],\left[\begin{array}{llll}
3 & -1 & \mathbf{1}
\end{array}\right],} \\
& {\left[\begin{array}{llll}
-3 & -1 & 2
\end{array}\right],\left[\begin{array}{llll}
2 & 4 & 1 & 3
\end{array}\right] .}
\end{aligned}
$$

Proof. The bigrassmannian computation follows from the Grassmannian computation as before. For the Grassmannian half, each pattern has at least two descents since an initial negative counts as one, so Grassmannians must avoid them. On the other hand, suppose $|\operatorname{Des}(w)| \geq 2$. At most four indexes are involved in such a descent. Striking everything else from the permutation results in an element of B_{2}, B_{3}, or B_{4} with two descents. Another quick computation shows that the above list contains all such elements with two descents, where for instance elements of B_{4} which contain a pattern in B_{3} which also has two descents have been omitted.
(My original proof was an awful and very lengthy proof by cases, which I do not want to transcribe.)
Remark 16. Type B_{n} bigrassmannians should be those of the following form:
(i) id $\in B_{n}$; or
(ii) $w \in S_{n} \subset B_{n}$ with signed permutation matrix

$$
w=\left[\begin{array}{lll}
& Q & \\
P & & \\
& & R
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{lll}
P & & \\
& & R \\
& Q &
\end{array}\right]
$$

in block form where P, Q, R are (square) identity matrices with P non-empty and proper; or
(iii) $w \notin S_{n} \subset B_{n}$ with signed permutation matrix

$$
w=\left[\begin{array}{lllll}
A & & & & \\
& & & D & \\
& & -C & & \\
& B & & & \\
& & & & E
\end{array}\right]
$$

in block form where A, B, D, E are identity matrices and C is a non-empty matrix with 1 's along the off-diagonal.

Corollary 17. We have the following counts of bigrassmannians in B_{n} of the preceding three types:
(i) 1
(ii) $\binom{n+1}{3}$
(iii) $\binom{n+3}{4}$.

Hence there are $\binom{n+1}{3}+1$ bigrassmannians in S_{n} and $\binom{n+3}{4}+\binom{n+1}{3}+1$ bigrassmannians in B_{n}. In terms of monomials, these counts are $\frac{1}{6}\left(n^{3}-n+6\right)$ for S_{n} and $\frac{1}{24}\left(n^{4}+10 n^{3}+11 n^{2}+2 n+24\right)$ for B_{n}.
Conjecture 18. In type D_{n}, there are

$$
\binom{n+5}{4}-9\binom{n+1}{2}-5=\frac{1}{24}\left(n^{4}+14 n^{3}-37 n^{2}+46 n\right)
$$

bigrassmannians.

Remark 19. Proofs of the above classification should be a straightforward proof by cases which I haven't taken the time to write down. The corollary follows by considering "break points" in a sort of stars and bars argument.

The D_{n} classification seems harder. Sara suggests it's not a pattern-avoidance property, though maybe some simple extra condition would give it. The count is quite similar to the B_{n} case (conjectured, for now).

3. Type D

Remark 20. "Editorial" note: this section is incomplete.
Definition 21. D_{n} is defined as the subgroup of B_{n} consisting of elements with evenly many negatives (in one-line notation).

Proposition 22. If $w \in D_{n}$, then

$$
\operatorname{Des}(w)=\left\{s_{i} \in S: v(i)>v(i+1)\right\}
$$

where $v(0):=-v(2), 0 \leq i<n$, and the s_{i} are the simple reflections/generators.

Proof. See Björner and Brenti, Proposition 8.2.2.
Remark 23. The failure of pattern avoidance to classify Grassmannians/bigrassmannians in D_{n} arises from the "end" condition $v(0):=-v(2)$, which is "context sensitive", whereas pattern avoidance does not depend on where the indexes are located.

Remark 24. We next give a couple of generalizations of pattern avoidance for use in type D, along with a conjectured characterization. I again haven't taken the time to completely verify it. (It should be a quick generalization of the type B_{n} case, which I only noticed a nice proof for when writing this up.)
Definition 25. If $w=\left[w_{1} \cdots w_{n}\right] \in B_{n}$, say it contains $u=\left[\begin{array}{l}u_{1} \cdots u_{k}: u_{k+1} \cdots u_{m}\end{array}\right] \in B_{m}$ if $w_{1} \cdots w_{k}$ are in the same relative order and of the same sign as $u_{1} \cdots u_{k}$, and, after "flattening", $\left[w_{k+1} \cdots w_{n}\right]$ contains $\left[\begin{array}{llll}u_{k+1} & \cdots & u_{m}\end{array}\right]$.
Example 26. $\left[\begin{array}{lll}2 & -1 & 3\end{array}-4\right]$ contains $\left[\begin{array}{ll}1: 2 & -3\end{array}\right]$ using 2 followed by $\left[\begin{array}{ll}3 & -4\end{array}\right]$. It avoids $[-1: 2-3]$ and $[1: 3-2]$ since the first entry, 2 , is non-negative. It avoids $[1: 3-2]$ since $3<|-4|$ while $3>|-2|$.

Example 27. w avoids $\left[\begin{array}{lll}u_{1} & \cdots & u_{m}\end{array}\right]$ if and only if w avoids $\left[: u_{1} \cdots u_{m}\right]$.
Conjecture 28. $w \in D_{n}$ is Grassmannian if and only if it avoids the following 37 patterns, where each \pm is independent:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\pm 1 & -2:
\end{array}\right] \text {, }}
\end{aligned}
$$

$$
\begin{aligned}
& {[-2 \pm 1:-3],[-3 \pm 1:-2],[-32:-1]} \\
& {[-2 \pm 1: 4 \pm 3],[-3 \pm 2: 4 \pm 1],[-3 \pm 1: 4 \pm 2]} \\
& {[-4 \pm 2: 3 \pm 1],[-4 \pm 1: 3 \pm 2],[-4 \pm 3: 2 \pm 1] \text {. }}
\end{aligned}
$$

Remark 29. How does the inverse's pattern avoidance relate to the original's pattern avoidance?

