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1. Grassmannians and Bigrassmannians in Type A

Definition 1. A Grassmannian w ∈ Sn is a permutation with ≤ 1 right descent. The only Grassmannian
with no descents is the identity.

Proposition 2. For w ∈ Sn with one-line notation w = w1 · · ·wn, the following are equivalent:

(i) w is Grassmannian
(ii) w is of the form

w1 < w2 < · · · < wk

wk+1 < wk+2 < · · · < wn

for some k ∈ [n− 1].
(iii) w is 321-, 2143-, and 3142-avoiding.

Proof.

• (i) ⇔ (ii): Clear.
• (i) ⇒ (iii): Contrapositive. If w has a 321, 2143, or 3142 pattern, it evidently has at least 2 descents.
• (iii)⇒ (i): Contrapositive. Suppose w has two descents at positions k1 < k2. Let a = wk1 , b = wk1+1,

c = wk2
, d = wk2+1, so a > b and c > d.

If b ≥ c, then a > b > d gives a 321 pattern, so suppose b < c, and note that now each of a, b, c, d
are distinct.

If a > c, then a > c > d gives a 321 pattern, so suppose a < c. If b > d, then a > b > d gives a 321
pattern, so suppose b < d. If a > d, then c > a > d > b gives a 3142 pattern, whereas if a < d, then
c > d > a > b gives a 2143 pattern.

�

Corollary 3. There are 2n − n Grassmannians in Sn.
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Proof. From (ii) of the proposition, to specify a Grassmannian it suffices to choose a set S = {w1, . . . , wk} ⊂ [n],
of which there are 2n. It’s easy to see that the resulting permutation will be the identity if and only if S is of
the form ∅ or {1, . . . , k}, which is hence counted n + 1 times. Otherwise, the result has one descent and is
counted just once. �

Remark 4. A permutation w contains a pattern v if and only if w−1 contains v−1. This is easy to see using
the permutation matrix interpretation of pattern containment–striking rows and columns from the matrix of
w yields the matrix of v; transposing such a matrix yields its inverse.

Definition 5. A bigrassmannian w ∈ Sn is a permutation where both w and w−1 are Grassmannian.

Proposition 6. For w ∈ Sn with one-line notation w = w1 · · ·wn, the following are equivalent:

(i) w is bigrassmannian
(ii) w is of one of the following forms:

(a) w1 = 1 and w2 · · ·wn forms a bigrassmannian in S[n]−{1}.
(b) w1 > 1 and for some k where a := w1 ≤ k < n we have

w = a, a + 1, . . . , k, 1, 2, . . . , a− 1, k + 1, . . . , n.

(iii) w is 321-, 2143-, 3142-, and 2413-avoiding.

Remark 7. The bold permutation is the only one not appearing on the previous list for Grassmannian
pattern avoidance.

Proof.

• (i) ⇔ (iii): w is bigrassmannian if and only if w,w−1 are Grassmannian, which by the preceding
proposition and remark occurs if and only if w is 321-, 2143-, 3142-, 321−1-, 2143−1-, and 3142−1-
avoiding. Only 3142−1 = 2413 is new.

• (ii) ⇒ (iii): in case (a) this is clear. In case (b), such a w is clearly Grassmannian with descent at k,
so it is 321-, 2143-, and 3142-avoiding. It is evidently also 2413-avoiding.

• (iii) ⇒ (ii): From (ii) and (iii) of the preceding proposition, we have some j such that w is

w1 < w2 < · · · < wj

wj+1 < wj+2 < · · · < wn.

If wj < wj+1 then w must be id, which is of the proper form, so suppose wj > wj+1. Now if w1, . . . , wj

are each successively one larger, w is of the form in (b), so suppose w1, . . . , wj “skips” something.
That is, there is some i with i > j such that w1 < wi < wj . Now, if w1 = 1, then w2 · · ·wn continues
to avoid the suggested patterns, so we may inductively assume it forms a bigrassmannian in S[n]−{1}.
(The base case n = 1 is trivial.) So, take w1 > 1. Since w is a permutation, something must hit 1,
and a moment’s thought reveals that wj+1 = 1 is forced. Now

wj+1 < w1 < wi < wj 1 < j < j + 1 < i

yields a 2413 pattern, a contradiction.

�

Corollary 8. There are 1 +
(
n+1
3

)
bigrassmannians in Sn.

Proof. Let B(n) denote the number of non-identity bigrassmannians in Sn. Condition (ii)(a) of the proposition
contributes B(n− 1) bigrassmannians to Sn, while condition (ii)(b) contributes n− a + 1 for each 2 ≤ a ≤ n,
i.e.

B(n) = B(n− 1) + (n− 1) + · · ·+ 2 + 1 = B(n− 1) +

(
n

2

)
.

Now B(2) = 1 by hand, which is
(
2+1
3

)
. Since

(
n+1
3

)
=
(
n
3

)
+
(
n
2

)
, we have B(n) =

(
n+1
3

)
. �

(The form in (ii) and this computation can be cleaned up significantly.)
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2. Type B

Remark 9. As a reflection group, Bn is generated by reflections through ei and ±ei ± ej for i 6= j in Rn. A
simple system (cf. Humphreys’ “Reflection Groups and Coxeter Groups”) is given by ei − ei+1 for 1 ≤ i < n
and e1.

Another construction of Bn is as a subgroup of S2n, namely all bijections w : [±n] → [±n] with
w(−a) = −w(a) (cf. §8.1 of Björner and Brenti’s lovely “Combinatorics of Coxeter Groups”). The simple
roots/generators S here (in window notation, a modification of one-line notation) are

si = [1, . . . , i− 1, i + 1, i, i + 2, . . . , n] 1 ≤ i < n

s0 = [−1, 2, . . . , n].

Björner and Brenti explicitly compute inv(w) in this notation and also show:

Proposition 10. Let v ∈ Bn. Then

Des(v) = {si ∈ S : v(i) > v(i + 1)} where v(0) := 0.

Definition 11. For a general Coxeter system (W,S), u ∈ W is Grassmannian if |Des(u)| ≤ 1, where
Des(u) := {s ∈ S : `(us) < `(u)} and where `(v) is the minimal length of an expression of the form
v = s1 · · · sm for si ∈ S. An element u ∈W is bigrassmannian if both u and u−1 are Grassmannian.

Example 12. In Bn, we can check that

|Des([−2 3 1 − 4 5])| = 3,

which arises from descents at s0, s2, s3.

Proposition 13. There are 3n − n Grassmannians in type Bn.

Proof. From the explicit description of descents in Bn, w ∈ Bn has at most one descent if and only if

(i) w1 < 0: w1 · · ·wn forms an increasing sequence and w1 < 0; or
(ii) w1 > 0: w1 · · ·wn is made of two increasing sequences, w1 < · · · < wk, wk+1 < · · · < wn with w1 > 0

and wk > wk+1; or
(iii) w = id.

Hence for each such element we can identify a possibly empty increasing sequence of positive entries followed
by a possibly empty increasing sequence thereafter. It follows that for each value 1, . . . , n we may specify
whether or not that entry is in the positive initial sequence, or whether it is in the second sequence, and if it
is in the second sequence, whether it is positive or negative. This yields 3n choices, though there are some
overcounts. In particular, the identity is obtained in n+ 1 ways in exact analogy to the Grassmannians in Sn.
The result follows. �

Definition 14. The notion of pattern avoidance in Bn is not simply inherited from pattern avoidance in
S2n. Instead, we can imagine elements of Bn as signed permutation matrices, namely permutation matrices
but with entries ±1. We say u ∈ Bn contains v ∈ Bm if we can strike rows and columns from the matrix of u
to obtain the matrix of v.

We again find that u avoids v if and only if u−1 avoids v−1.

Proposition 15. Grassmannians in Bn are precisely those elements avoiding

[−1 − 2], [−1 3 2], [2 1 − 3], [−2 3 1],

[−2 3 − 1], [3 1 − 2], [3 2 1], [3 2 − 1],

[−3 1 − 2], [−3 2 1], [−3 2 − 1], [2 1 4 3], [3 1 4 2].

The bigrassmannians in Bn are precisely those elements which additionally avoid

[2 − 3 1], [2 − 3 − 1], [3 − 1 2],

[−3 − 1 2], [2 4 1 3].
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Proof. The bigrassmannian computation follows from the Grassmannian computation as before. For the
Grassmannian half, each pattern has at least two descents since an initial negative counts as one, so
Grassmannians must avoid them. On the other hand, suppose |Des(w)| ≥ 2. At most four indexes are
involved in such a descent. Striking everything else from the permutation results in an element of B2, B3, or
B4 with two descents. Another quick computation shows that the above list contains all such elements with
two descents, where for instance elements of B4 which contain a pattern in B3 which also has two descents
have been omitted.

(My original proof was an awful and very lengthy proof by cases, which I do not want to transcribe.) �

Remark 16. Type Bn bigrassmannians should be those of the following form:

(i) id ∈ Bn; or
(ii) w ∈ Sn ⊂ Bn with signed permutation matrix

w =

 Q
P

R

 or

P R
Q


in block form where P,Q,R are (square) identity matrices with P non-empty and proper; or

(iii) w 6∈ Sn ⊂ Bn with signed permutation matrix

w =


A

D
−C

B
E


in block form where A,B,D,E are identity matrices and C is a non-empty matrix with 1’s along the
off-diagonal.

Corollary 17. We have the following counts of bigrassmannians in Bn of the preceding three types:

(i) 1
(ii)

(
n+1
3

)
(iii)

(
n+3
4

)
.

Hence there are
(
n+1
3

)
+ 1 bigrassmannians in Sn and

(
n+3
4

)
+
(
n+1
3

)
+ 1 bigrassmannians in Bn. In terms

of monomials, these counts are 1
6 (n3 − n + 6) for Sn and 1

24 (n4 + 10n3 + 11n2 + 2n + 24) for Bn.

Conjecture 18. In type Dn, there are(
n + 5

4

)
− 9

(
n + 1

2

)
− 5 =

1

24
(n4 + 14n3 − 37n2 + 46n)

bigrassmannians.

Remark 19. Proofs of the above classification should be a straightforward proof by cases which I haven’t
taken the time to write down. The corollary follows by considering “break points” in a sort of stars and bars
argument.

The Dn classification seems harder. Sara suggests it’s not a pattern-avoidance property, though maybe
some simple extra condition would give it. The count is quite similar to the Bn case (conjectured, for now).

3. Type D

Remark 20. “Editorial” note: this section is incomplete.

Definition 21. Dn is defined as the subgroup of Bn consisting of elements with evenly many negatives (in
one-line notation).
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Proposition 22. If w ∈ Dn, then

Des(w) = {si ∈ S : v(i) > v(i + 1)}
where v(0) := −v(2), 0 ≤ i < n, and the si are the simple reflections/generators.

Proof. See Björner and Brenti, Proposition 8.2.2. �

Remark 23. The failure of pattern avoidance to classify Grassmannians/bigrassmannians in Dn arises from
the “end” condition v(0) := −v(2), which is “context sensitive”, whereas pattern avoidance does not depend
on where the indexes are located.

Remark 24. We next give a couple of generalizations of pattern avoidance for use in type D, along with a
conjectured characterization. I again haven’t taken the time to completely verify it. (It should be a quick
generalization of the type Bn case, which I only noticed a nice proof for when writing this up.)

Definition 25. If w = [w1 · · · wn] ∈ Bn, say it contains u = [u1 · · · uk : uk+1 · · · um] ∈ Bm if w1 · · · wk

are in the same relative order and of the same sign as u1 · · ·uk, and, after “flattening”, [wk+1 · · · wn]
contains [uk+1 · · · um].

Example 26. [2 − 1 3 − 4] contains [1 : 2 − 3] using 2 followed by [3 − 4]. It avoids [−1 : 2 − 3] and
[1 : 3 − 2] since the first entry, 2, is non-negative. It avoids [1 : 3 − 2] since 3 < | − 4| while 3 > | − 2|.

Example 27. w avoids [u1 · · · um] if and only if w avoids [: u1 · · · um].

Conjecture 28. w ∈ Dn is Grassmannian if and only if it avoids the following 37 patterns, where each ± is
independent:

[±1 − 2 :],

[: 3 2 ± 1], [: 3 1 − 2], [: 2 1 − 3], [: 2 1 4 3], [: 3 1 4 2]

[−2 ± 1 : −3], [−3 ± 1 : −2], [−3 2 : −1]

[−2 ± 1 : 4 ± 3], [−3 ± 2 : 4 ± 1], [−3 ± 1 : 4 ± 2]

[−4 ± 2 : 3 ± 1], [−4 ± 1 : 3 ± 2], [−4 ± 3 : 2 ± 1].

Remark 29. How does the inverse’s pattern avoidance relate to the original’s pattern avoidance?
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