login
A368789
a(n) = (n+1)^2 * (n!)^3 * Sum_{k=1..n} 1/((k+1)^2 * (k!)^3).
1
0, 1, 19, 913, 91301, 16434181, 4831649215, 2164578848321, 1402647093712009, 1262382384340808101, 1527482685052377802211, 2419532573122966438702225, 4906812058293375937688112301, 12502557124531521889229310142949
OFFSET
0,3
FORMULA
a(0) = 0; a(n) = (n+1)^2 * n * a(n-1) + 1.
a(n) = A368776(n) - (n+1)^2 * (n!)^3.
PROG
(PARI) a(n) = (n+1)^2*n!^3*sum(k=1, n, 1/((k+1)^2*k!^3));
CROSSREFS
Cf. A368776.
Sequence in context: A183473 A217826 A209353 * A005535 A171226 A247279
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 05 2024
STATUS
approved