login
A368764
a(n) = n! * (1 + Sum_{k=0..n} binomial(k+3,4) / k!).
3
1, 2, 9, 42, 203, 1085, 6636, 46662, 373626, 3363129, 33632005, 369953056, 4439438037, 57712696301, 807977750594, 12119666261970, 193914660195396, 3296549223326577, 59337886019884371, 1127419834377810364, 22548396687556216135, 473516330438680549461
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = n*a(n-1) + binomial(n+3,4).
a(n) = n! + A368575(n).
E.g.f.: (1 + x * (1+3*x/2+x^2/2+x^3/24) * exp(x)) / (1-x).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x*sum(k=0, 3, binomial(3, k)*x^k/(k+1)!)*exp(x))/(1-x)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 04 2024
STATUS
approved