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Pillai's gcd sum function P(n) (A018804) is de�ned as

P(n) =

n∑
k=1

gcd(k, n). (1)

The identity

P(n) =
∑
d|n

phi(d)
n

d
, (2)

where phi(n) denotes Euler's totient function (A000010), expresses P(n) as the
Dirichlet convolution of two multiplicative functions. Hence P(n) is a
multiplicative function.

We de�ne P3(n) by

P3(n) =

n∑
k=1

gcd(3k, n). (3)

This is A368737 in the OEIS. We shall show that P3(n) is also a multiplicative
function. We require the following elementary properties of the gcd function:

1) if m is a positive integer, then gcd(ma,mb) = m gcd(a, b).

2) if gcd(a, c) = 1 then gcd(ab, c) = gcd(b, c).

3) the identity gcd(k + n, n) = gcd(k, n) shows that the gcd function, qua
function of k, is periodic with period n.

4) the gcd function is a multiplicative function in the following sense: if b and
c are coprime, then gcd(a, bc) = gcd(a, b)gcd(a, c).

Proposition 1.

(i)
P3(3n+ 1) = P(3n+ 1) (4)

(ii)
P3(3n+ 2) = P(3n+ 2) (5)
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(iii)
P3(3n) = 9P(n) (6)

Proof.

(i) From (3)

P3(3n+ 1) =

3n+1∑
k=1

gcd(3k, 3n+ 1)

=

3n+1∑
k=1

gcd(k, 3n+ 1)

= P(3n+ 1).

(ii) Similarly, one can show that P3(3n+ 2) = P(3n+ 2).

(iii) From (3)

P3(3n) =

3n∑
k=1

gcd(3k, 3n)

= 3

3n∑
k=1

gcd(k, n)

= 9

n∑
k=1

gcd(k, n)

= 9P(n),

where, in the penultimate step, we made use of the periodicity of the gcd
function as a function of k.�

Proposition 2.

P3(n) =
∑
d|n

gcd(3, d)phi(d)
n

d
. (7)

Proof.

If n ≡ 1(mod 3) then (7) follows from (2) and (4). If n ≡ 2(mod 3) then (7)
follows from (2) and (5). Suppose now n is a multiple of 3, say n = 3N. We
need to prove that

P3(3N) =
∑
d|3N

gcd(3, d)phi(d)
3N

d
.
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By (6),

P3(3N) = 9P(N)

= 9
∑
d|N

phi(d)
N

d
,

by (2). Therefore the proposition will be established if we can show that
following identity holds for all positive integer N :

∑
d|3N

gcd(3, d)
phi(d)

d
= 3

∑
d|N

phi(d)

d
. (8)

We separately evaluate the left and right sides of (8) and show that they are
equal. Firstly, we evaluate the right side of (8).

Let N = 3kN ′, where k is the highest power of 3 dividing N, so that
gcd(3, N ′) = 1. The divisors of N are of the form e, 3e, 32e, ..., 3ke where e runs
through the divisors of N ′. Note that all the divisors e of N ′ are coprime to 3.

Hence

3
∑
d|N

phi(d)

d
= 3

∑
e|N ′

phi(e)

e
+
∑
e|N ′

phi(3e)

3e
+ · · ·+

∑
e|N ′

phi
(
3ke
)

3ke


=

∑
e|N ′

phi(e)

e

(
3 + 3

phi(3)

3
+ · · ·+ 3

phi
(
3k
)

3k

)

=
∑
e|N ′

phi(e)

e

(
3 + 3

(3− 1)

3
+ · · ·+ 3

(
3k − 3k−1

)
3k

)

= (2k + 3)
∑
e|N ′

phi(e)

e
,

where we made use of the multiplicativity of Euler's phi function and the
values phi

(
3j
)
= 3j − 3j−1.

We now evaluate the left side of (8). The divisors of 3N are of the form
e, 3e, 32e, ..., 3k+1e where e runs through the divisors of N ′.
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Hence

∑
d|3N

gcd(3, d)
phi(d)

d
=

∑
e|N ′

phi(e)

e
+ 3

∑
e|N ′

phi(3e)

3e
+ · · ·+ 3

∑
e|N ′

phi
(
3k+1e

)
3k+1e


=

∑
e|N ′

phi(e)

e

(
1 + 3

phi(3)

3
+ · · ·+ 3

phi
(
3k+1

)
3k+1

)

=
∑
e|N ′

phi(e)

e

(
1 + 3

(3− 1)

3
+ · · ·+ 3

(
3k+1 − 3k

)
3k+1

)

= (2k + 3)
∑
e|N ′

phi(e)

e
,

as before for the rhs of (8). Thus (8) is established. This completes the proof
of the Proposition.�

Corollary. The arithmetical function P3(n) is multiplicative since it is the
Dirichlet convolution of a pair of multiplicative functions.
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