login
A368721
a(n) = Product_{j=1..n, k=1..n} (j^4 + k^4 + n^4).
3
1, 3, 940896, 18425962131085183248, 652934720004728520613911984092239003385856, 433324200327440062759688153700055880769227264159137063987248492437306880000
OFFSET
0,2
COMMENTS
In general, for m>0, limit_{n->oo} (Product_{j=1..n, k=1..n} (j^m + k^m + n^m))^(1/(n^2)) / n^m = exp(Integral_{x=0..1, y=0..1} log(x^m + y^m + 1) dy dx) = 3 / exp(HurwitzLerchPhi(-1/2, 1, 1 + 1/m)/2 + Integral_{x=0..1} HurwitzLerchPhi(-1/(1 + x^m), 1, 1 + 1/m) / (1 + x^m) dx).
FORMULA
Limit_{n->oo} a(n)^(1/(n^2)) / n^4 = exp(Integral_{x=0..1, y=0..1} log(x^4 + y^4 + 1) dy dx) = 1.35451345305131009729671041498902524074679186355643287514556358...
MATHEMATICA
Table[Product[j^4 + k^4 + n^4, {j, 1, n}, {k, 1, n}], {n, 0, 6}]
CROSSREFS
Cf. A368685 (m=1), A368622 (m=2), A368720 (m=3).
Sequence in context: A261541 A309225 A137131 * A376130 A229725 A244113
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 04 2024
STATUS
approved