login
A368598
Number of non-isomorphic n-element sets of singletons or pairs of elements of {1..n}, or unlabeled loop-graphs with n edges and up to n vertices.
15
1, 1, 2, 6, 17, 52, 173, 585, 2064, 7520, 28265, 109501, 437394, 1799843, 7629463, 33302834, 149633151, 691702799, 3287804961, 16058229900, 80533510224, 414384339438, 2185878202630, 11811050484851, 65318772618624, 369428031895444, 2135166786135671, 12601624505404858
OFFSET
0,3
COMMENTS
It doesn't matter for this sequence whether we use loops such as {x,x} or half-loops such as {x}.
LINKS
Eric Weisstein's World of Mathematics, Graph Loop.
FORMULA
a(n) = A070166(n, n). - Andrew Howroyd, Jan 09 2024
EXAMPLE
Non-isomorphic representatives of the a(0) = 1 through a(4) = 17 set-systems:
{} {{1}} {{1},{2}} {{1},{2},{3}} {{1},{2},{3},{4}}
{{1},{1,2}} {{1},{2},{1,2}} {{1},{2},{3},{1,2}}
{{1},{2},{1,3}} {{1},{2},{3},{1,4}}
{{1},{1,2},{1,3}} {{1},{2},{1,2},{1,3}}
{{1},{1,2},{2,3}} {{1},{2},{1,2},{3,4}}
{{1,2},{1,3},{2,3}} {{1},{2},{1,3},{1,4}}
{{1},{2},{1,3},{2,3}}
{{1},{2},{1,3},{2,4}}
{{1},{3},{1,2},{2,4}}
{{1},{1,2},{1,3},{1,4}}
{{1},{1,2},{1,3},{2,3}}
{{1},{1,2},{1,3},{2,4}}
{{1},{1,2},{2,3},{3,4}}
{{2},{1,2},{1,3},{1,4}}
{{4},{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,4},{2,3}}
{{1,2},{1,3},{2,4},{3,4}}
MATHEMATICA
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]], p[[i]]}, {i, Length[p]}])], {p, Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Subsets[Subsets[Range[n], {1, 2}], {n}]]], {n, 0, 5}]
PROG
(PARI) a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A070166. - Andrew Howroyd, Jan 09 2024
CROSSREFS
For any number of edges of any size we have A000612, covering A055621.
For any number of edges we have A000666, A054921, A322700.
The labeled version is A014068.
Counting by weight gives A320663, or A339888 with loops {x,x}.
The covering case is A368599.
For edges of any size we have A368731, covering A368186.
Row sums of A368836.
A000085 counts set partitions into singletons or pairs.
A001515 counts length-n set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
Sequence in context: A307975 A364329 A367056 * A346428 A148453 A097514
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 05 2024
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Jan 09 2024
STATUS
approved