Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Dec 30 2023 23:20:17
%S 0,1,10,12,21,22,100,102,120,123,132,201,202,210,213,220,231,312,321,
%T 333,1000,1002,1020,1023,1032,1200,1203,1224,1230,1234,1242,1243,1302,
%U 1320,1324,1342,1422,1423,1432,2001,2002,2010,2013,2020,2031,2100,2103,2124,2130,2134,2142,2143
%N Numbers such that the square root of the sum of each digit cubed is equal to the digital sum of the number.
%C Interestingly 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789 are all terms.
%e 132 is a term since sqrt(1^3 + 3^3 + 2^3) = sqrt(36) = 6 = 1+3+2.
%p q:= n-> (l-> add(i^3, i=l)=add(i, i=l)^2)(convert(n, base, 10)):
%p select(q, [$0..2200])[]; # _Alois P. Heinz_, Dec 30 2023
%t Select[Range[0, 2200], Total[(d = IntegerDigits[#])^3] == Total[d]^2 &] (* _Amiram Eldar_, Dec 30 2023 *)
%o (Python)
%o def ok(n): return sum(d:=list(map(int, str(n))))**2==sum(di**3 for di in d)
%o print([k for k in range(2144) if ok(k)]) # _Michael S. Branicky_, Dec 30 2023
%o (PARI) isok(k) = my(d=digits(k)); vecsum(d)^2 == vecsum(apply(x->x^3, d)); \\ _Michel Marcus_, Dec 30 2023
%Y Cf. A007953, A055012.
%K nonn,base
%O 1,3
%A _Thomas Dowson_, Dec 29 2023