login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

AGM transform of positive integers (see Comments for definition).
17

%I #41 Jan 29 2024 09:14:54

%S 0,1,54,3856,384375,52173801,9342271792,2144652558336,616093495529805,

%T 217007162119140625,92121505246667356416,46444033776765696086016,

%U 27459259766085858672714571,18830590227539089561714381425,14834398958231516437500000000000

%N AGM transform of positive integers (see Comments for definition).

%C The AGM transform {AGM(n): n >= 1} is a measure of the difference between the arithmetic mean A(n) = S(n)/n and the geometric mean G(n) = P(n)^(1/n) of a sequence {a(n): n >= 1}, where S(n) = a(1)+...+a(n), P(n) = a(1)*...*a(n). It is given by AGM(n) = S(n)^n - n^n*P(n).

%C For odd n, these terms appear to be divisible by n^n; for even n, by (n/2)^n. Additional reductions may be possible. For example, with n = 7, 11, 15, 19, ..., 59, the terms are also divisible by these powers of two: 4, 8, 11, 16, 19, 23, 26, 32, 35, 39, 42, 47, 50, 54. - _Hans Havermann_, Jan 24 2024

%C Since a(n) = n^n*(((n+1)/2)^n-n!) = (n(n+1)/2)^n-n^n*n!, a(n) is divisible by n^n for odd n and divisible by (n/2)^n for even n. - _Chai Wah Wu_, Jan 25 2024

%H Paolo Xausa, <a href="/A368366/b368366.txt">Table of n, a(n) for n = 1..220</a>

%p AGM := proc(f,M) local b,n,S,P,i,t; b:=[];

%p for n from 1 to M do

%p S:=add(f(i),i=1..n); P:=mul(f(i),i=1..n); t:=S^n-n^n*P;

%p b:=[op(b),t];

%p od:

%p b;

%p end;

%p fid:=proc(n) n; end; # the identity map

%p AGM(fid,20);

%t A368366[n_] := n^n (((n + 1)/2)^n - n!);

%t Array[A368366, 10] (* _Paolo Xausa_, Jan 29 2024 *)

%o (PARI) a368366(n) = {my(v=vector(n,i,i)); vecsum(v)^n - n^n*vecprod(v)}; \\ _Hugo Pfoertner_, Jan 24 2024

%o (Python)

%o from itertools import count, islice

%o def AGM(g): # generator of AGM transform of sequence given by generator g

%o S, P = 0, 1

%o for n, an in enumerate(g, 1):

%o S += an

%o P *= an

%o yield S**n-n**n*P

%o print(list(islice(AGM(count(1)), 15))) # _Michael S. Branicky_, Jan 24 2024

%o (Python)

%o from math import factorial

%o def A368366(n): return ((m:=n**n)*(n+1)**n>>n)-m*factorial(n) # _Chai Wah Wu_, Jan 25 2024

%Y Cf. A000027, A127610, A368372/A368373.

%Y See A368367-A368371, A369394 for further examples.

%Y The AGM transform of (n mod 2) is A276978.

%Y A368374 gives another way to look at the problem.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Jan 24 2024