%I #20 Apr 04 2024 12:52:24
%S 1,1,8,2,1,2,10,1,10,1,1,1,2,2,1,2,2,2,1,2,1,1,2,2,1,2,167,1,2,1,319,
%T 1,1,2,1,1,2,1,2,1,911,1,1,2,1,2,433,1,2,1,2,1,2,325,488,2,1,2,1,2,1,
%U 40,20,2,2,1,2,1,2,1,2,2,2,2,2,2,1,2,1,2,1,2
%N Main diagonal of A365484: the n-th term in the trajectory of n under the A014682 map.
%H Paolo Xausa, <a href="/A368300/b368300.txt">Table of n, a(n) for n = 1..10000</a>
%H Alex V. Kontorovich and Jeffrey C. Lagarias, <a href="https://arxiv.org/abs/0910.1944">Stochastic Models for the 3x+1 and 5x+1 Problems</a>, arXiv:0910.1944 [math.NT], 2009, and in Jeffrey C. Lagarias, ed., <a href="http://www.ams.org/bookstore-getitem/item=mbk-78">The Ultimate Challenge: The 3x+1 Problem</a>, American Mathematical Society, 2010, pp. 131-188.
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F a(n) = A365484(n,n-1).
%t A368300[n_]:=Nest[If[OddQ[#],(3#+1)/2,#/2]&,n,n-1];Array[A368300,100]
%Y Cf. A014682, A347270, A347272, A365484, A368301, A371689 (parity).
%K nonn,easy
%O 1,3
%A _Paolo Xausa_, Dec 20 2023