login
A368106
The number of infinitary divisors of the powerful part of n.
2
1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
a(n) = A037445(A057521(n)).
Multiplicative with a(p) = 1 and a(p^e) = 2^A000120(e) for e >= 2.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A037445(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.89684906463124350536..., where f(x) = (1-x) * (Product_{k>=0} (1 + 2*x^(2^k)) - x).
MATHEMATICA
f[p_, e_] := If[e == 1, 1, 2^DigitCount[e, 2, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x == 1, 1, 2^hammingweight(x)), factor(n)[, 2]));
CROSSREFS
Similar sequences: A323308, A357669, A368104.
Sequence in context: A173398 A362905 A370771 * A368104 A104404 A351655
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Dec 12 2023
STATUS
approved