login
A368038
The sum of non-unitary divisors of the nonsquarefree numbers.
5
2, 6, 3, 8, 14, 9, 12, 24, 5, 12, 16, 30, 41, 36, 24, 18, 56, 7, 15, 28, 36, 48, 48, 24, 62, 36, 105, 20, 40, 84, 39, 64, 72, 54, 48, 120, 21, 36, 87, 84, 140, 112, 60, 42, 144, 11, 64, 30, 72, 126, 96, 72, 108, 96, 233, 28, 76, 60, 120, 54, 112, 180, 117, 84
OFFSET
1,1
COMMENTS
The positive terms of A048146, since A048146(k) = 0 if and only if k is squarefree (A005117).
LINKS
FORMULA
a(n) = A048146(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/2)*(1-1/zeta(3))/(1-1/zeta(2))^2 = 0.899359898779... .
MATHEMATICA
f[p_, e_] := (p^(e+1)-1)/(p-1); nusigma[n_] := Module[{fct = FactorInteger[n]}, If[n == 1, 0, Times @@ f @@@ fct - Times @@ (1 + Power @@@ fct)]]; Select[Array[nusigma, 200], # > 0 &]
PROG
(PARI) lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(sigma(f) - prod(i=1, #f~, 1+f[i, 1]^f[i, 2]), ", "))); }
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 09 2023
STATUS
approved