login
A367824
Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.
3
1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, 3, 1, -1, -3, -1, 1, 2, 1, 0, -1, -2, -1, 1, 5, 3, 1, -1, -3, -5, -1, 1, 3, 1, 1, 0, -1, -1, -3, -1, 1, 7, 5, 1, 1, -1, -1, -5, -7, -1, 1, 4, 3, 2, 1, 0, -1, -2, -3, -4, -1, 1, 0, 7, 5, 3, 1, -1, -3, -5, -7, -9, -1
OFFSET
0,17
COMMENTS
This array generalizes A367727.
LINKS
FORMULA
A(1, n) = -A026741(n-1) for n > 0.
A(2, n) = -A060819(n-2) for n > 2.
A(3, n) = -A060789(n-3) for n > 3.
A(4, n) = -A106609(n-4) for n > 3.
A(5, n) = -A106611(n-5) for n > 4.
A(6, n) = -A051724(n-6) for n > 5.
A(7, n) = -A106615(n-7) for n > 6.
A(8, n) = -A106617(n-8) = A231190(n) for n > 7.
A(9, n) = -A106619(n-9) for n > 8.
A(10, n) = -A106612(n-10) for n > 9.
EXAMPLE
The array of the fractions begins:
1, -1, -1, -1, -1, -1, -1, -1, ...
1, 0, -1/3, -1/2, -3/5, -2/3, -5/7, -3/4, ...
1, 1/3, 0, -1/5, -1/3, -3/7, -1/2, -5/9, ...
1, 1/2, 1/5, 0, -1/7, -1/4, -1/3, -2/5, ...
1, 3/5, 1/3, 1/7, 0, -1/9, -1/5, -3/11, ...
1, 2/3, 3/7, 1/4, 1/9, 0, -1/11, -1/6, ...
1, 5/7, 1/2, 1/3, 1/5, 1/11, 0, -1/13, ...
1, 3/4, 5/9, 2/5, 3/11, 1/6, 1/13, 0, ...
...
The array of the numerators begins:
1, -1, -1, -1, -1, -1, -1, -1, ...
1, 0, -1, -1, -3, -2, -5, -3, ...
1, 1, 0, -1, -1, -3, -1, -5, ...
1, 1, 1, 0, -1, -1, -1, -2, ...
1, 3, 1, 1, 0, -1, -1, -3, ...
1, 2, 3, 1, 1, 0, -1, -1, ...
1, 5, 1, 1, 1, 1, 0, -1, ...
1, 3, 5, 2, 3, 1, 1, 0, ...
...
MATHEMATICA
A[0, 0]=1; A[n_, k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k, k], {n, 0, 11}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A367825 (denominator), A367826 (antidiagonal sums).
Sequence in context: A124921 A090623 A098094 * A087283 A355924 A111625
KEYWORD
sign,base,frac,look,tabl
AUTHOR
Stefano Spezia, Dec 02 2023
STATUS
approved