login
A367694
G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - x * A(x^4))).
3
1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 8, 10, 13, 16, 20, 24, 29, 35, 43, 53, 66, 82, 102, 126, 155, 190, 233, 286, 352, 435, 537, 664, 819, 1011, 1244, 1532, 1884, 2322, 2860, 3528, 4349, 5366, 6614, 8154, 10044, 12377, 15247, 18791, 23156, 28546
OFFSET
0,11
FORMULA
a(n) = (-1)^n + Sum_{k=0..floor((n-1)/4)} a(k) * a(n-1-4*k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+sum(j=0, (i-1)\4, v[j+1]*v[i-4*j])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 27 2023
STATUS
approved