%I #10 Nov 18 2023 10:55:29
%S 2,6,22,92,426,2146,11634,67472
%N Number of discrete uninorms defined on the finite chain L_n={0,1,...,n-1,n}.
%C The number of discrete uninorms on the finite chain L_n={0,1,...,n-1,n}, i.e., the number of monotonic increasing binary functions U: L_n^2->L_n such that U is commutative (U(x,y)=U(y,x) for all x,y in L_n), associative (U(U(x,y),z)=U(x,U(y,z)) for all x,y,z in L_n) and has neutral element e in L_n (U(x,e)=x for all x in L_n).
%H M. Couceiro, J. Devillet and J.L. Marichal. <a href="https://doi.org/10.1016/j.fss.2017.06.013">Characterizations of idempotent discrete uninorms</a>, Fuzzy Sets and Systems, Volume 334, 2018, 60-72.
%H M. Mas, S. Massanet, D. Ruiz-Aguilera, and J. Torrens <a href="https://doi.org/10.3233/IFS-151728">A survey on the existing classes of uninorms</a>, Journal of Intelligent and Fuzzy Systems, Volume 29, 2015, 1021-1037.
%H M. Munar, S. Massanet and D. Ruiz-Aguilera, <a href="https://doi.org/10.1016/j.ins.2022.10.121">On the cardinality of some families of discrete connectives</a>, Information Sciences, Volume 621, 2023, 708-728.
%K nonn,hard,more
%O 1,1
%A _Marc Munar_, Nov 18 2023