login
A367343
Compute the commas sequence starting at 1, as in A121805, except do the calculations in octal. The terms are written here in decimal (see also A367344).
4
1, 10, 29, 70, 119, 177, 187, 214, 266, 286, 339, 368, 373, 419, 450, 473, 488, 495, 552, 553, 562, 579, 604, 637, 678, 727, 784, 785, 794, 811, 836, 869, 910, 959, 1016, 1017, 1027, 1053, 1095, 1153, 1163, 1189, 1231, 1289, 1299, 1325, 1367, 1425, 1435, 1461, 1503, 1562
OFFSET
1,2
LINKS
EXAMPLE
See A367344 for the calculation of the first three terms.
MATHEMATICA
b = 8; a[1] = 1; a[n_] := a[n] = For[x = Mod[a[n - 1], b]; y = 0, y <= (b - 1), y++, k = a[n - 1] + b*x + y; If[y == IntegerDigits[k, b][[1]], Return[k]]]; Array[a, 10^4] (* Michael De Vlieger, Nov 15 2023, after Jean-François Alcover at A121805 *)
PROG
(Python)
from itertools import islice
from sympy.ntheory.factor_ import digits
def agen(): # generator of terms
an, y = 1, 1
while y < 8:
yield an
an, y = an + 8*(an%8), 1
while y < 8:
if str(digits(an+y, 8)[1]) == str(y):
an += y
break
y += 1
print(list(islice(agen(), 52))) # Michael S. Branicky, Nov 16 2023
CROSSREFS
Sequence in context: A079273 A271991 A048469 * A031129 A048772 A055850
KEYWORD
nonn,base,fini,full
AUTHOR
N. J. A. Sloane, Nov 15 2023
STATUS
approved