login
A367320
Carmichael numbers k such that (k-1)/lambda(k) > (m-1)/lambda(m) for all Carmichael numbers m < k, where lambda is the Carmichael lambda function (A002322).
2
561, 1105, 1729, 29341, 41041, 63973, 172081, 825265, 852841, 1773289, 5310721, 9890881, 12945745, 18162001, 31146661, 93869665, 133205761, 266003101, 417241045, 496050841, 509033161, 1836304561, 1932608161, 2414829781, 4579461601, 9799928965, 11624584621, 12452890681
OFFSET
1,1
MATHEMATICA
seq[kmax_] := Module[{s = {}, r, rm = 0, lam}, Do[If[CompositeQ[k], lam = CarmichaelLambda[k]; If[Mod[k, lam] == 1, r = (k - 1)/lam; If[r > rm, rm = r; AppendTo[s, k]]]], {k, 9, kmax, 2}]; s]; seq[10^6]
PROG
(PARI) lista(kmax) = {my(r, rm = 0, lam); forcomposite(k = 4, kmax, if(k % 2, lam = lcm(znstar(k)[2]); if(k % lam == 1, r = (k-1)/lam; if(r > rm, rm = r; print1(k, ", "))))); }
CROSSREFS
Subsequence of A002997.
Sequence in context: A376485 A173703 A306338 * A300629 A135720 A263403
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 14 2023
STATUS
approved