OFFSET
0,4
COMMENTS
Draw a Dyck path from (0,0) to (n,n) so the path always stays above the diagonal. Now section the square into horizontal rows of height one to the left of the path and tile these rows using 1 X 2 and 1 X 1 tiles. Similarly, section the part to the right of the path into columns with width one and tile these using 2 X 1 and 1 X 1 tiles. Furthermore, no 1 X 1 tiles are allowed in the bottom row.
LINKS
Anna Tscharre, A possible 6 X 6 tiling
FORMULA
a(n) == 1 (mod 2) <=> n in { A055010 }. - Alois P. Heinz, Nov 11 2023
MAPLE
b:= proc(x, y) option remember; (F->
`if`(x=0 and y=0, 1, `if`(x>0, b(x-1, y)*F(y-1), 0)+
`if`(y>x, b(x, y-1)*F(x+1), 0)))(combinat[fibonacci])
end:
a:= n-> b(n$2):
seq(a(n), n=0..15); # Alois P. Heinz, Nov 11 2023
MATHEMATICA
b[x_, y_] := b[x, y] = With[{F = Fibonacci},
If[x == 0 && y == 0, 1,
If[x > 0, b[x - 1, y]*F[y - 1], 0] +
If[y > x, b[x, y - 1]*F[x + 1], 0]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Nov 14 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Anna Tscharre, Nov 11 2023
STATUS
approved