login
A367048
G.f. satisfies A(x) = 1 + x*A(x)^4 + x^2*A(x).
3
1, 1, 5, 27, 177, 1270, 9645, 76206, 619913, 5156959, 43667985, 375140383, 3261467573, 28641957520, 253702185717, 2263964868768, 20334261430769, 183680693283325, 1667613040080061, 15208587941854251, 139266058402655669, 1279953660931370623
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-5*k+1,k) * binomial(4*n-7*k,n-2*k)/(3*n-5*k+1).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(3*n-5*k+1, k)*binomial(4*n-7*k, n-2*k)/(3*n-5*k+1));
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 03 2023
STATUS
approved