OFFSET
1,1
COMMENTS
a(7) > 10^1500.
Includes 2^((4*k + 4)*2^((4*k + 4)*2^k + k) - 16^(2^k*(k + 1))), which is (2^x)^(2^x) * (2^x)^(2^x) = (2^(x+1))^(2^(x-k-1)) * (2^(x-k-1))^(2^(x+1)) with x = (k+1) * 2^(k+2) - 1.
LINKS
Robert Israel, Table of n, a(n) for n = 1..6
EXAMPLE
a(1) = 4^16 * 16^4 = 8^8 * 8^8 = 281474976710656
a(2) = 3^27 * 27^3 = 9^9 * 9^9 = 150094635296999121.
a(3) = 10^80 * 80^10 = 20^50 * 50^20 =
1073741824000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.
a(4) = 2^324 * 324^2 = 8^96 * 96^8 =
3587638001325335308951996778029678444520536159022591698847370237163925406936776358067367488612064034816.
a(5) = 8^144 * 144^8 = 16^96 * 96^16.
a(6) = 16^144 * 144^16 = 32^96 * 96^32.
MAPLE
N:= 10^1000: # for terms <= N
R:= 'R': A:= NULL:
for n from 2 to ilog2(N) do
for k from n do
v:= n^k * k^n;
if v > N then break fi;
if assigned(R[v]) then A:= A, v else R[v]:= 1 fi
od od:
sort([A]);
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Oct 31 2023
STATUS
approved