login
A366880
Lexicographically earliest infinite sequence such that a(i) = a(j) => A366879(i) = A366879(j) for all i, j >= 0.
2
1, 2, 3, 4, 3, 5, 6, 7, 3, 3, 7, 8, 3, 9, 10, 11, 3, 3, 3, 3, 3, 12, 13, 14, 3, 15, 16, 17, 3, 18, 19, 20, 3, 3, 3, 3, 3, 3, 3, 3, 3, 21, 22, 23, 3, 24, 25, 26, 3, 3, 27, 28, 3, 29, 30, 31, 3, 32, 33, 34, 3, 17, 9, 25, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 35, 36, 3, 37, 38, 39, 3, 40, 41, 42, 3, 43
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of A366879.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
A326938(n) = sumdiv(n, d, if(n/d%2, moebius(n/d)*moebius(d)*d));
v366880 = rgs_transform(vector(1+up_to, n, A366879(n-1)));
A366880(n) = v366880[1+n];
CROSSREFS
Cf. also A366878.
Sequence in context: A182973 A360565 A278056 * A324345 A368695 A324533
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 27 2023
STATUS
approved