login
A366877
Lexicographically earliest infinite sequence such that a(i) = a(j) => A337377(i) = A337377(j) for all i, j >= 0, where A337377 is the primorial deflation (denominator) of Doudna sequence.
2
1, 1, 2, 1, 3, 1, 4, 1, 5, 3, 2, 1, 6, 2, 7, 1, 8, 5, 9, 3, 3, 1, 4, 1, 10, 6, 11, 1, 12, 4, 13, 1, 14, 8, 15, 5, 16, 5, 17, 3, 5, 3, 2, 1, 6, 2, 7, 1, 18, 10, 19, 6, 20, 3, 4, 1, 21, 12, 22, 2, 23, 7, 24, 1, 25, 14, 26, 8, 27, 8, 28, 5, 29, 16, 15, 5, 30, 9, 31, 3, 8, 5, 9, 3, 3, 1, 4, 1, 10, 6, 11, 1, 12, 4, 13, 1, 32, 18
OFFSET
0,3
COMMENTS
Restricted growth sequence transform of A337377.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A319627(n) = (A064989(n) / gcd(n, A064989(n)));
A337377(n) = A319627(A005940(1+n));
v366877 = rgs_transform(vector(1+up_to, n, A337377(n-1)));
A366877(n) = v366877[1+n];
CROSSREFS
Cf. also A366876.
Sequence in context: A337785 A290980 A007381 * A337377 A308059 A361026
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 26 2023
STATUS
approved