login
A366876
Lexicographically earliest infinite sequence such that a(i) = a(j) => A337376(i) = A337376(j) for all i, j >= 0, where A337376 is the primorial deflation (numerator) of Doudna sequence.
2
1, 2, 3, 4, 5, 3, 6, 7, 8, 9, 5, 10, 11, 6, 12, 13, 14, 15, 16, 17, 8, 5, 18, 19, 20, 21, 11, 6, 22, 12, 23, 24, 25, 26, 27, 28, 29, 16, 30, 31, 14, 15, 8, 9, 32, 18, 33, 34, 35, 36, 37, 38, 20, 11, 11, 39, 40, 41, 22, 12, 42, 23, 43, 44, 45, 46, 47, 48, 49, 27, 50, 51, 52, 53, 29, 54, 55, 30, 56, 57, 25, 26, 27, 28, 14
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of A337376.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A319626(n) = (n / gcd(n, A064989(n)));
A337376(n) = A319626(A005940(1+n));
v366876 = rgs_transform(vector(1+up_to, n, A337376(n-1)));
A366876(n) = v366876[1+n];
CROSSREFS
Cf. also A366877.
Sequence in context: A351285 A341673 A278057 * A330750 A346099 A345941
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 26 2023
STATUS
approved