login
A366798
Lexicographically earliest infinite sequence such that a(i) = a(j) => A366797(i) = A366797(j) for all i, j >= 0, where A366797 is the number of odd divisors permuted by A163511.
4
1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 4, 2, 2, 1, 5, 4, 4, 3, 6, 3, 3, 2, 6, 4, 4, 2, 4, 2, 2, 1, 6, 5, 5, 4, 7, 4, 4, 3, 8, 6, 6, 3, 6, 3, 3, 2, 7, 6, 6, 4, 7, 4, 4, 2, 6, 4, 4, 2, 4, 2, 2, 1, 9, 6, 6, 5, 10, 5, 5, 4, 11, 7, 7, 4, 7, 4, 4, 3, 11, 8, 8, 6, 11, 6, 6, 3, 8, 6, 6, 3, 6, 3, 3, 2, 10, 7, 7, 6, 11, 6, 6
OFFSET
0,4
COMMENTS
Restricted growth sequence transform of A366797.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001227(n) = numdiv(n>>valuation(n, 2));
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
v366798 = rgs_transform(vector(1+up_to, n, A366797(n-1)));
A366798(n) = v366798[1+n];
CROSSREFS
Cf. also A366806, A366874.
Sequence in context: A290251 A080801 A336391 * A366797 A365394 A365391
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 27 2023
STATUS
approved