login
A366776
Number of 2-distant 5-noncrossing partitions of {1,...,n}.
2
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213546, 27642948, 190866373, 1382340849, 10469739750, 82701857286, 679644668584, 5797647603036, 51228938289039, 467980667203765
OFFSET
0,3
COMMENTS
a(n+1) is the binomial transform of A192126.
REFERENCES
Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp.
LINKS
Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018-2023.
FORMULA
a(n+1) = Sum_{i=0..n} binomial(n,i)*A192126(i).
EXAMPLE
There are 678570 partitions of 11 elements, but a(11)=678569 because the partition (1,7)(2,8)(3,9)(4,10)(5,11)(6) has a 2-distant 5-crossing.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Juan B. Gil, Nov 13 2023
STATUS
approved