Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Nov 06 2023 22:58:49
%S 90,180,210,270,360,420,450,462,525,540,550,630,720,810,840,858,900,
%T 910,924,990,1050,1080,1100,1155,1170,1260,1326,1350,1386,1440,1470,
%U 1530,1575,1620,1650,1666,1680,1710,1716,1800,1820,1848,1870,1890,1911,1938,1980
%N Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239).
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C From _Robert Israel_, Nov 06 2023: (Start)
%C Positive integers divisible by the product of four primes, prime(i)*prime(j)*prime(k)*prime(l), i < j <= k < l, with i + l = j + k.
%C All positive multiples of terms are terms. (End)
%F These are numbers k such that A086971(k) > A366739(k).
%e The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence.
%e The terms together with their prime indices begin:
%e 90: {1,2,2,3}
%e 180: {1,1,2,2,3}
%e 210: {1,2,3,4}
%e 270: {1,2,2,2,3}
%e 360: {1,1,1,2,2,3}
%e 420: {1,1,2,3,4}
%e 450: {1,2,2,3,3}
%e 462: {1,2,4,5}
%e 525: {2,3,3,4}
%e 540: {1,1,2,2,2,3}
%e 550: {1,3,3,5}
%e 630: {1,2,2,3,4}
%e 720: {1,1,1,1,2,2,3}
%p N:= 10^4: # for terms <= N
%p P:= select(isprime, [$1..N]): nP:= nops(P):
%p R:= {}:
%p for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do
%p for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do
%p for k from j do
%p l:= j+k-i;
%p if l <= k or l > nP then break fi;
%p v:= P[i]*P[j]*P[k]*P[l];
%p if v <= N then
%p R:= R union {seq(t,t=v..N,v)};
%p fi
%p od od od:
%p sort(convert(R,list)); # _Robert Israel_, Nov 06 2023
%t prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t Select[Range[1000],!UnsameQ@@Total/@Union[Subsets[prix[#],{2}]]&]
%Y The complement is too dense.
%Y For all divisors instead of just semiprimes we have A299729, strict A316402.
%Y Distinct semi-sums of prime indices are counted by A366739.
%Y Partitions of this type are counted by A366753, non-binary A366754.
%Y A001222 counts prime factors (or prime indices), distinct A001221.
%Y A001358 lists semiprimes, squarefree A006881, conjugate A065119.
%Y A056239 adds up prime indices, row sums of A112798.
%Y A299701 counts distinct subset-sums of prime indices, positive A304793.
%Y A299702 ranks knapsack partitions, counted by A108917, strict A275972.
%Y Semiprime divisors are listed by A367096 and have:
%Y - square count: A056170
%Y - sum: A076290
%Y - squarefree count: A079275
%Y - count: A086971
%Y - firsts: A220264
%Y Cf. A000720, A001248, A008967, A365541, A365920, A366737, A366738, A366741, A367093, A367095, A367097.
%K nonn
%O 1,1
%A _Gus Wiseman_, Nov 05 2023