login
a(n) = denominator(Bernoulli'(n, x)) / denominator(Bernoulli''(n, x)).
0

%I #13 Dec 30 2023 13:04:01

%S 1,1,1,2,1,6,1,6,1,10,1,6,1,210,1,2,3,10,1,42,1,110,3,2,1,546,1,2,1,

%T 30,1,462,1,170,3,2,1,51870,1,2,3,110,1,42,1,46,15,2,1,1326,1,22,3,10,

%U 1,798,1,290,3,2,1,930930,1,2,3,34,5,966,1,2,3,110,1

%N a(n) = denominator(Bernoulli'(n, x)) / denominator(Bernoulli''(n, x)).

%F a(n) = A324370(n) / A366168(n).

%p seq(denom(diff(bernoulli(n, x), x))/denom(diff(diff(bernoulli(n, x), x),x)), n = 0..100);

%o (PARI) a(n) = lcm(apply(denominator, Vec(deriv(bernpol(n)))))/ lcm(apply(denominator, Vec(deriv(deriv(bernpol(n)))))); \\ _Michel Marcus_, Oct 14 2023

%Y Cf. A324370/A366168, A366572, A144845/A366168.

%K nonn

%O 0,4

%A _Peter Luschny_, Oct 13 2023