login
A366572
a(n) = denominator(Bernoulli(n, x)) / denominator(Bernoulli''(n, x)).
2
1, 2, 6, 2, 30, 6, 42, 6, 10, 10, 66, 6, 2730, 210, 2, 6, 510, 10, 798, 42, 110, 330, 138, 2, 546, 546, 2, 2, 870, 30, 14322, 462, 170, 510, 6, 2, 1919190, 51870, 2, 6, 13530, 110, 1806, 42, 46, 690, 1410, 2, 1326, 1326, 22, 66, 1590, 10, 798, 798, 290, 870
OFFSET
0,2
FORMULA
a(n) = A144845(n) / A366168(n).
MAPLE
seq(denom(bernoulli(n, x))/denom(diff(diff(bernoulli(n, x), x), x)), n=0..100);
PROG
(PARI) a(n) = lcm(apply(denominator, Vec(bernpol(n))))/lcm(apply(denominator, Vec(deriv(deriv(bernpol(n)))))); \\ Michel Marcus, Oct 14 2023
CROSSREFS
Cf. A144845/A366168, A366571, A144845/A324370 (1st derivative).
Sequence in context: A141498 A284004 A225481 * A144845 A346093 A345284
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 13 2023
STATUS
approved