login
A366437
G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^(7/2).
7
1, 1, -7, 49, -427, 4165, -43435, 473977, -5344333, 61772179, -727993301, 8714701219, -105672771225, 1295237037815, -16021641194545, 199747074505773, -2507395464414008, 31664298046926328, -401994771266030880, 5127701624204157600, -65684716411944207144
OFFSET
0,3
FORMULA
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(9*k/2-1,k) * binomial(7*k/2,n-k) / (9*k/2-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(9*k/2-1, k)*binomial(7*k/2, n-k)/(9*k/2-1));
CROSSREFS
Partial sums give A366406.
Sequence in context: A090016 A005924 A145358 * A195514 A204211 A349117
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 09 2023
STATUS
approved