login
A366435
G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^(5/2).
7
1, 1, -5, 25, -160, 1150, -8851, 71345, -594530, 5080300, -44272760, 391961328, -3515490820, 31874449160, -291676084205, 2690284784605, -24985250240043, 233447554879855, -2192862233710505, 20696454624488125, -196168344717398010, 1866499116495323946
OFFSET
0,3
FORMULA
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(7*k/2-1,k) * binomial(5*k/2,n-k) / (7*k/2-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(7*k/2-1, k)*binomial(5*k/2, n-k)/(7*k/2-1));
CROSSREFS
Partial sums give A366405.
Sequence in context: A085644 A356599 A137963 * A144887 A181344 A361916
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 09 2023
STATUS
approved