login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triprimes whose reversal is also a triprime.
1

%I #70 Nov 21 2023 10:30:11

%S 8,44,66,99,117,147,165,171,212,222,242,244,246,282,285,286,290,292,

%T 333,338,343,363,366,369,404,406,418,425,434,435,438,442,474,475,494,

%U 498,506,507,508,524,534,539,548,555,561,574,575,582,595,604,605,606,609,628,642,646,663,670,682,705

%N Triprimes whose reversal is also a triprime.

%H Robert Israel, <a href="/A366430/b366430.txt">Table of n, a(n) for n = 1..10000</a>

%e a(5) = 117 is a term because 117 = 3^2 * 13 has 3 prime factors, counted with multiplicity, and so does its reversal 711 = 3^2 * 79.

%p rev:= proc(n) local L,i;

%p L:= convert(n,base,10);

%p add(L[-i]*10^(i-1),i=1..nops(L))

%p end proc:

%p select(t -> numtheory:-bigomega(t) = 3 and numtheory:-bigomega(rev(t))=3, [$1..10000]);

%t Select[Range[710], PrimeOmega[#]==3&&PrimeOmega[FromDigits[Reverse[IntegerDigits[#]]]]==3&] (* _Stefano Spezia_, Nov 07 2023 *)

%o (Python)

%o from sympy import factorint

%o def tp(n): return sum(factorint(n).values()) == 3

%o def ok(n): return tp(n) and tp(int(str(n)[::-1]))

%o print([k for k in range(10**3) if ok(k)]) # _Michael S. Branicky_, Nov 21 2023

%Y Cf. A014612, A085751. Contains A046329. Includes 10*k for k in A367151.

%K nonn,base

%O 1,1

%A _Zak Seidov_ and _Robert Israel_, Nov 06 2023