login
A366411
a(n) is the total number of Hamiltonian paths on rectangular grids of size n X k for 1 <= k <= n.
1
1, 5, 29, 353, 5485, 260323, 15277779, 3211933481, 790502793321, 751204032996623, 808973740240335345, 3499358510266725179221, 16872857815987642169925097, 333905047994165804391613820789, 7308582206982080422190512432243395
OFFSET
1,2
EXAMPLE
For n = 2, the a(2) = 5 solutions are:
+---+ +---+---+ +---+---+ +---+---+ +---+---+
| | | | | | | | | | | | | |
| * | | **|** | | * | * | | **|** | | **|** |
| * | | | * | | * | * | | * | | | * | * |
+---+ +---+---+ +---+---+ +---+---+ +---+---+
| * | | | * | | * | * | | * | | | * | * |
| * | | **|** | | **|** | | **|** | | * | * |
| | | | | | | | | | | | | |
+---+ +---+---+ +---+---+ +---+---+ +---+---+
CROSSREFS
Row sums of triangle A366399.
Sequence in context: A195228 A226668 A226666 * A356486 A289483 A216027
KEYWORD
nonn,walk,more
AUTHOR
Douglas Boffey, Oct 09 2023
EXTENSIONS
More terms (using A332307) from Pontus von Brömssen, Oct 09 2023
STATUS
approved