login
A366392
Lexicographically earliest infinite sequence such that a(i) = a(j) => A366390(i) = A366390(j) for all i, j >= 1, where A366390 is the Dirichlet inverse of A366389.
3
1, 2, 3, 4, 5, 6, 7, 4, 4, 8, 9, 4, 10, 11, 12, 4, 13, 4, 14, 4, 15, 16, 17, 4, 6, 18, 4, 4, 19, 20, 21, 4, 22, 23, 24, 4, 25, 26, 27, 4, 28, 29, 30, 31, 4, 32, 33, 4, 34, 35, 36, 37, 38, 4, 39, 4, 40, 41, 42, 4, 43, 44, 4, 4, 45, 46, 47, 4, 48, 49, 50, 4, 51, 52, 53, 4, 54, 55, 56, 4, 57, 58, 59, 4, 60, 61, 15, 62
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A366390.
For all i, j: a(i) = a(j) => A365428(i) = A365428(j) => A359377(i) = A359377(j).
LINKS
PROG
(PARI)
\\ Needs also program given in A366389:
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v366392 = rgs_transform(DirInverseCorrect(vector(up_to, n, A366389(n))));
A366392(n) = v366392[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 22 2023
STATUS
approved