login
a(n) = n / gcd(n, A366275(n)), where A366275 is the Cat's tongue permutation.
4

%I #10 Oct 07 2023 21:39:33

%S 0,1,1,1,1,5,1,7,1,1,5,11,1,13,7,15,1,17,1,19,5,7,11,23,1,1,13,27,7,

%T 29,15,31,1,11,17,7,1,37,19,13,5,41,7,43,11,15,23,47,1,49,1,51,13,53,

%U 27,1,7,57,29,59,15,61,31,63,1,65,11,67,17,23,7,71,1,73,37,5,19,11,13,79,5,27,41,83,7,17,43,29,11

%N a(n) = n / gcd(n, A366275(n)), where A366275 is the Cat's tongue permutation.

%C Numerator of n / A366275(n).

%H Antti Karttunen, <a href="/A366284/b366284.txt">Table of n, a(n) for n = 0..16383</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = n / A366283(n) = n / gcd(n, A366275(n))

%o (PARI) A366284(n) = (n/gcd(n,A366275(n))); \\ Uses the program given in A366275.

%Y Cf. A057889, A163511, A366275, A366282, A366283, A366285 (denominators), A366286.

%Y Cf. also A364491.

%K nonn,frac

%O 0,6

%A _Antti Karttunen_, Oct 07 2023