login
A366274
a(n) is the least k such that prime(n+1+k) >= prime(n)+prime(n+1).
1
1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 10, 10, 13, 13, 13, 14, 14, 15, 15, 16, 18, 20, 20, 19, 19, 18, 22, 24, 24, 25, 27, 27, 27, 29, 28, 29, 30, 31, 31, 33, 33, 32, 34, 37, 39, 38, 39, 40, 40, 41, 42, 42, 43, 42, 43, 43, 43
OFFSET
1,2
COMMENTS
a(n) is the number of primes between prime(n) and prime(n) + prime(n+1).
Conjecture: for n >= 3, a(n) < n.
LINKS
FORMULA
a(n) = A000720(A001043(n)-1)-n = A000720(A076273(n+1))-n. - Paolo Xausa, Dec 09 2023
EXAMPLE
For n = 5 prime(n) = 11. prime(5) + prime(6) = 11+13=24. The 4th prime after 13 is 29 which is the next prime after 13 greater than or equal to 24. So a(5) = 4.
MAPLE
R:= 1: pn:= 2: pn1:= 3: p:=5: m:= 4: pp:= 7:
for n from 2 to 100 do
pn:= pn1; pn1:= nextprime(pn1);
while pp <= pn + pn1 do m:= m+1; pp:= nextprime(pp); od;
R:= R, m-n-1;
od:
R; # Robert Israel, Oct 31 2023
MATHEMATICA
A366274[n_]:=PrimePi[Prime[n]+Prime[n+1]-1]-n; Array[A366274, 100] (* Paolo Xausa, Dec 09 2023 *)
PROG
(Python)
m=0
#list here is a list of prime numbers A000040.
def a(n):
global list
sum= list[n]+list[n+1]
i=n+2
while True:
if(list[i]>=sum):
m=i
break
i=i+1
k = m-(n+1)
return k
#
#calculate the terms of the sequence a(n).
seq = []
for n in range(0, firstN):
seq.append(a(n))
(PARI) a(n) = my(k=1, q=prime(n)+prime(n+1)); while(prime(n+k) < q, k++); k; \\ Michel Marcus, Oct 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Butler, Oct 05 2023
STATUS
approved