login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

G.f. A(x) satisfies A(x) = 1/(1 - x)^4 + x*(1 - x)^4*A(x)^4.
1

%I #8 Oct 04 2023 12:51:07

%S 1,5,26,200,1995,22522,272152,3437280,44806905,598204475,8137535934,

%T 112382617018,1571496538035,22205618546014,316570999534832,

%U 4547819503936622,65770112191659609,956743348385310031,13989838139093922658,205511713513718581234

%N G.f. A(x) satisfies A(x) = 1/(1 - x)^4 + x*(1 - x)^4*A(x)^4.

%F a(n) = Sum_{k=0..n} binomial(n+7*k+3,n-k) * binomial(4*k,k)/(3*k+1).

%o (PARI) a(n) = sum(k=0, n, binomial(n+7*k+3, n-k)*binomial(4*k, k)/(3*k+1));

%Y Cf. A014140, A164965, A366034.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Oct 04 2023