login
A366018
Decimal expansion of a constant related to the asymptotics of A181315.
3
4, 8, 2, 4, 2, 0, 4, 3, 9, 5, 8, 7, 3, 1, 9, 7, 6, 4, 6, 5, 9, 3, 6, 4, 3, 9, 1, 2, 6, 6, 8, 4, 9, 4, 1, 8, 5, 0, 7, 6, 6, 5, 6, 4, 5, 9, 2, 6, 5, 4, 2, 9, 7, 0, 5, 1, 9, 1, 0, 9, 1, 2, 2, 0, 4, 3, 4, 1, 3, 7, 3, 9, 5, 8, 5, 8, 6, 9, 4, 1, 9, 5, 1, 6, 2, 8, 2, 6, 4, 5, 6, 5, 6, 1, 8, 0, 6, 5, 8, 4, 9, 1, 8, 9, 1, 8
OFFSET
0,1
FORMULA
Equals limit_{n->infinity} A181315(n) * n^(3/2) / A270914^n.
EXAMPLE
0.482420439587319764659364391266849418507665645926542970519109122...
MATHEMATICA
RealDigits[Sqrt[s/(Pi*Derivative[0, 2][QPochhammer][-1, r*s])]/r /. FindRoot[{2*s == QPochhammer[-1, r*s], r*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/2}, {s, 1/2}, WorkingPrecision -> 120], 10, 105][[1]]
CROSSREFS
Sequence in context: A200412 A368646 A197483 * A019954 A072616 A059627
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 26 2023
STATUS
approved