login
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 4 * A(x)).
6

%I #8 Sep 27 2023 03:43:13

%S 0,1,8,102,1580,27193,499828,9609372,190869948,3886281300,80681111940,

%T 1701418017390,36345240847188,784821812522062,17103169093916120,

%U 375670490644949624,8308349385885678684,184856293637482503660,4134886240989315235840,92928784113832360511800,2097399158679611824619120

%N G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 4 * A(x)).

%C Reversion of g.f. for heptagonal pyramidal numbers (with signs).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeptagonalPyramidalNumber.html">Heptagonal Pyramidal Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a>

%F a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 4^k for n > 0.

%F a(n) ~ sqrt(163 - 1521/sqrt(89)) * (4933 + 801*sqrt(89))^n / (sqrt(Pi) * n^(3/2) * 2^(9*n + 9/2)). - _Vaclav Kotesovec_, Sep 27 2023

%t nmax = 20; A[_] = 0; Do[A[x_] = x (1 + A[x])^4/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^4, {x, 0, 20}], x], x]

%t Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]

%Y Cf. A002293, A002413, A064088, A365754, A365817, A366014, A366015, A366017.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Sep 26 2023