%I #17 Sep 23 2023 07:26:26
%S 1,0,0,0,0,1,0,0,0,1,252,0,0,1,4004,756756,0,1,65756,69837768,
%T 11732745024,1,1047508,5772957036,3957845988096,623360743125121,
%U 16781260,475191562560,1078063276530240,587517500395425601,88832646060056769732,38604505286340
%N Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(4*k+5) / (4*k+5)! ).
%F a(0) = 1; a(n) = Sum_{k=0..floor((n-5)/4)} binomial(n,4*k+5) * a(n-4*k-5).
%F E.g.f.: 1 / ( 1 + x - (sinh(x) + sin(x))/2 ).
%o (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+x-(sinh(x)+sin(x))/2)))
%Y Cf. A245790, A365915, A365916.
%Y Cf. A352429, A365911.
%Y Cf. A365898.
%K nonn,easy
%O 0,11
%A _Seiichi Manyama_, Sep 23 2023