login
Expansion of (1/x) * Series_Reversion( x*(1+x)^3*(1-x)^4 ).
5

%I #23 Feb 16 2024 09:52:07

%S 1,1,5,17,83,381,1939,9905,52544,282315,1545130,8552557,47880020,

%T 270401515,1539288570,8821594865,50860072024,294774097800,

%U 1716506373521,10037592274363,58920231785426,347051995986538,2050627029532225,12151336260368205

%N Expansion of (1/x) * Series_Reversion( x*(1+x)^3*(1-x)^4 ).

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(3*n+k+2,k) * binomial(5*n-k+3,n-k).

%F a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(2*n-2*k,n-2*k). - _Seiichi Manyama_, Jan 18 2024

%F a(n) = (1/(n+1)) * [x^n] 1/( (1+x)^3 * (1-x)^4 )^(n+1). - _Seiichi Manyama_, Feb 16 2024

%o (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(3*n+k+2, k)*binomial(5*n-k+3, n-k))/(n+1);

%o (SageMath)

%o def A365878(n):

%o h = binomial(5*n + 3, n) * hypergeometric([-n, 3*(n + 1)], [-5 * n - 3], -1) / (n + 1)

%o return simplify(h)

%o print([A365878(n) for n in range(24)]) # _Peter Luschny_, Sep 21 2023

%Y Cf. A365752, A365855.

%Y Cf. A365879, A368079.

%Y Cf. A370269.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Sep 21 2023